[1]张静,张亚见,周倩倩,等.Sinorhizobiumfredii S15阻控大豆吸收镉、铅的效果及作用机制研究[J].大豆科学,2020,39(05):767-774.[doi:10.11861/j.issn.1000-9841.2020.05.0767]
 ZHANG Jing,ZHANG Ya-jian,ZHOU Qian-qian,et al.Effects and Mechanism of Sinorhizobiumfredii S15 in Reducing Cadmium and Lead Uptake of Soybean[J].Soybean Science,2020,39(05):767-774.[doi:10.11861/j.issn.1000-9841.2020.05.0767]

Sinorhizobiumfredii S15阻控大豆吸收镉、铅的效果及作用机制研究


[1]Wolnik K A, Fricke F L, Capar S G, et al.Elements in major raw agricultural crops in the United States. 1. Cadmium and lead in lettuce, peanuts, potatoes, soybeans, sweet corn, and wheat[J]. Journal of Agricultural and Food Chemistry,1983,31(6): 1240-1244.[2]Bingham F T, Page A L, Mahler R J,et al. Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge[J]. Journal of Environmental Quality, 1975, 4(2):207-211.[3]Zhang Z W, Watanabe T, Shimbo S, et al. Lead and cadmium contents in cereals and pulses in North-eastern China[J]. Science of the Total Environment, 1998, 220(2-3):137-145.[4]Shute T, Macfie S M. Cadmium and zinc accumulation in soybean: A threat to food safety?[J]. Science of the Total Environment,2006,371(1-3):63-73.[5]陈文新, 汪恩涛,陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系[J].中国农业科学,2004(1):81-86.(Chen W X, Wang E T, Chen W T.The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments[J].China Agricultural Science, 2004(1): 81-86.)[6]Ahmad D, Mehmannavaz R, Damaj M, et al. Isolation and characterization of symbiotic N2-fixing Rhizobium melilotifrom soils contaminated with aromatic and chloroaromatic hydrocarbons: PAHs and PCBs[J]. International Biodeterioration and Biodegradation, 1997, 39(1):33-43.[7]王瑾,王喆之,董忠民.土壤氢氧化细菌促进作物生长机理研究进展[J].应用与环境生物学报,2012,18(5):853-861. (Wang J, Wang Z Z, Dong Z M. Progress in recent on soil hydroxide-oxidizing bacteria associate with legume nodules and rotation benefits[J]. Journal of Applied and Environmental Biology, 2012,18(5): 853-861.)[8]赵叶舟,王浩铭,汪自强.豆科植物和根瘤菌在生态环境中的地位和作用[J]. 农业环境与发展, 2013(4):7-12. (Zhao Y Z, Wang H M, Wang Z Q. The role of leguminous plants and Rhizobium in the ecological environment[J]. Agriculture Environment and Development, 2013(4): 7-12.)[9]Dary M, Chamber-Pérez M A, Palomares A J, et al. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria[J]. Journal of Hazardous Materials,2010, 177(1-3): 323-330.[10]Fatnassi I C, Chiboub M, Saadani O, et al. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress[J]. Comptes Rendus Biologies, 2015, 338(4):241-254.[11]陈雯莉,黄巧云,郭学军.根瘤菌对土壤铜-锌和镉形态分配的影响[J].应用生态学报,2003(8):1278-1282. (Chen W L, Huang Q Y, Guo X J. Effects of Rhizobia on morphological distribution of Cu, Zn and Cd in soil[J]. Journal of Applied Ecology, 2003 (8): 1278-1282.)[12]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.[J]. Plant and Cell Physiology, 1981, 22(5): 867-880.[13]Cakmak I,Marschenr H.Magnesium deficiency and high light intensity enhance activity of superoxide dismutase ascobate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology,1992, 98: 1222-1227.[14]Hodges D M, Delong J M, Forney C F. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207: 604-611.[15]Gtz M, Gomes N C M , Dratwinski A, et al. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community[J]. FEMS Microbiology Ecology, 2006, 56(2): 207-218.[16]Xu Z H, Zhang R F, Wang D D, et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation[J]. Applied and Environmental Microbiology, 2014, 80(9): 2941-2950.[17]李会娟. 2种植物磷含量的检测方法比较研究[J]. 现代农业科技, 2012(11): 16-17.(Li H J. Comparative study on determination of phosphorus content in two kinds of plants [J]. Modern Agricultural Science and Technology, 2012(11): 16-17.)[18]谢红伟.水杨酸比色法测定水中硝酸盐氮的含量[J]. 贵州农业科学, 1999(3): 41-42.(Xie H W. Determination of nitrogen content in nitrate by salicy acid colorimetry in water[J]. Guizhou Agricultural Sciences, 1999(3): 41-42.)[19]赖金龙,杨垒滟,付倩,等.Sr(2+)在印度芥菜幼苗中的富集-亚细胞分布及贮存形态研究[J].农业环境科学学报,2015,34(11):2055-2062. (Lai J L, Yang L Y, Fu Q, et al. Bioaccumulation, subcellular distribution and chemical forms of strontium in Brassica juncea L.[J]. Journal of Agriculture Environment Science, 2015,34(11): 2055-2062.)[20]张甲耀,李静,夏威林,等.生物修复技术研究进展[J].应用与环境生物学报, 1996, 2(2):193-199. (Zhang J Y, Li J, Xia W L, et al. Bioremediation researches[J]. Journal of Applied and Environmental Biology, 1996, 2(2): 193-199.)[21]徐劼, 于明革, 陈英旭, 等. 铅在茶树体内的分布及化学形态特征[J]. 应用生态学报, 2011, 22(4): 891-896. (Xu J, Yu M G, Chen Y X,et al. Characteristics of distribution and chemical forms of Pb in tea plant varieties[J]. Journal of Applied Ecology, 2011, 22(4): 891-896.)[22]Chen L, He L Y, Wang Q, et al. Synergistic effects of plant growth-promoting Neorhizobiumhuautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper[J]. Journal of Hazardous Materials, 2016, 312:123-131. [23]Grandlic C J, Mendez M O, Jon C, et al. Plant growth-promoting bacteria for phytostabilization of mine tailings[J]. Environmental Science and Technology, 2008,42(6):2079-2084.[24]Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat[J]. Acta Physiologiae Plantarum, 2009, 31: 861-864.[25]Burd G I, Dixon D G, Glick B R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants[J]. Canadian Journal of Microbiology, 2000, 46: 237-245.[26]Treesubsuntorn C, Dhurakit P, Khaksar G, et al. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (oryza sativa L.)[J]. Environmental Science and Pollution Research, 2018, 25(26): 25690-25701.[27]Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (lycopersicon esculentum L.)[J]. Chemosphere, 2007, 69(2): 220-228.[28]María C, Romero-Puertas, Corpas F J, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J]. Journal of Plant Physiology, 2007, 164(10): 1346-1357.[29]Hérouart D, Van Montagu M, Inzé D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(7): 3108-3112.[30]Bilal S, Shahzad R, Khan AL, et al. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation[J].Journal of Hazardous Materials,2019,379: 120824.[31]谭佳缘,孙蔓蔓,夏师慧,等.重金属胁迫和内生菌对植物氮代谢影响的研究进展[J].新农业,2019(17):7-10.(Tan J Y, Sun M M, Xia S H, et al. Research progress on the effects of heavy metal stress and endophytic bacteria on plant nitrogen metabolism[J]. New Agriculture, 2019(17): 7-10.)[32]Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes[J]. Journal of Biotechnology, 2003, 106(2-3): 169-178. [33]郎宸用. 植物内生菌提取物对玉米生长特性及产量的影响[J].江苏农业科学,2018,46(20):62-65.(Lang C Y. Effects of plant endophytic bacteria extracts on growth and yield of corn[J]. Jiangsu Agricultural Science, 2018,46(20): 62-65.)[34]黄运湘. 镉对大豆的毒害效应及不同大豆品种耐镉差异性研究[D].长沙:湖南农业大学,2006.(Huang Y X. Toxic effects of cadmium on Glycine max plants and differences of cadmium tolerance of various Glycine max varieties[D]. Changsha:Hunan Agricultural University, 2006.)


 WANG Hong-guang,SUN Dian-jun,MA Zhong-qiang,et al.Isolation and Identification of Rhizobium HD001 and Its Nodulation Capacity Test in Soybean Germplasm[J].Soybean Science,2014,33(05):379.[doi:10.11861/j.issn.1000-9841.2014.03.0379]
[2]裴晓峰,关大伟,李 俊,等.耐旱大豆根瘤菌的筛选及其接种效应[J].大豆科学,2012,31(03):420.[doi:10.3969/j.issn.1000-9841.2012.03.017]
 PEI Xiao-feng,GUAN Da-wei,LI Jun,et al.Screening of Drought-Tolerance Rhizobium and Its Influence on Soybean[J].Soybean Science,2012,31(05):420.[doi:10.3969/j.issn.1000-9841.2012.03.017]
 MENG Qing-ying,ZHANG Chun-feng,YU Zhong-he,et al.Effects of Rhizobia on Rhizosphere Soil Microoganisms and Agronomic Characters of Soybean[J].Soybean Science,2012,31(05):498.[doi:10.3969/j.issn.1000-9841.2012.03.035]
 WU Ping,HE Qing-yuan,LI Zheng-peng,et al.Phenotypic Diversity of Soybean Rhizobia in Anhui Province[J].Soybean Science,2011,30(05):219.[doi:10.11861/j.issn.1000-9841.2011.02.0219]
 YANG Sheng-hui,WANG Su-ge,YU Hui-yong,et al.Effects of Rhizobial Inoculation on the Grain Filling Characteristics and Quality of Summer Soybean[J].Soybean Science,2014,33(05):534.[doi:10.11861/j.issn.1000-9841.2014.04.0534]
 LI Xin-yuan,WANG Shou-yi,WANG Shu-rong,et al.Effect of Rhizobium Combined with Pamibacillus mucilaginosus on Soybean Chlorophyll Fluorescence Characteristics,Yield and Quality[J].Soybean Science,2014,33(05):541.[doi:10.11861/j.issn.1000-9841.2014.04.0541]
 WANG Yuan-yuan,DUAN Yu-xi,CHEN Li-jie,et al.Protoplast Formation of Antagonistic Rhizobium[J].Soybean Science,2010,29(05):92.[doi:10.11861/j.issn.1000-9841.2010.01.0092]
 YIN Li-na,DUAN Yu-xi,WANG Yuan-yuan,et al.Screening of Rhizobia Against Soybean Cyst Nematode[J].Soybean Science,2010,29(05):276.[doi:10.11861/j.issn.1000-9841.2010.02.0276]
 LI Tao,GUAN Da-wei,LI Jun,et al.Screening of Superior Soybean Rhizobial Strains and Approach to Inoculation Methods for Region of HuangHuaiHai[J].Soybean Science,2010,29(05):645.[doi:10.11861/j.issn.1000-9841.2010.04.0645]
 ZHANG Hong-xia,FENG Rui-hua,GUAN Da-wei,et al.Screening of Superior Soybean Rhizobial Strains and Analyzing of Different Inoculation Methods in Loess Plateau Region of China[J].Soybean Science,2010,29(05):996.[doi:10.11861/j.issn.1000-9841.2010.06.0996]


基金项目:国家自然科学基金(41977199, 41471273);江苏省社会发展项目(BE2016744)。

更新日期/Last Update: 2020-10-21