[1]杨静,赵倩倩,牛陆,等.转盾壳霉Cmoxdc1基因增强大豆对菌核病抗性的研究[J].大豆科学,2020,39(05):712-719.[doi:10.11861/j.issn.1000-9841.2020.05.0712]
 YANG Jing,ZHAO Qian-qian,NIU Lu,et al.Study on the Enhancement of Soybean Resistance to Sclerotinia Sclerotiorum with Transformation of Cmoxdc1 Gene from Coniothyrium Minitans[J].Soybean Science,2020,39(05):712-719.[doi:10.11861/j.issn.1000-9841.2020.05.0712]
点击复制

转盾壳霉Cmoxdc1基因增强大豆对菌核病抗性的研究

参考文献/References:

[1]Koenning S R, Wrather J A.Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009[J/OL]. Plant Health Progress, 2010. doi:10.1094/PHP-2010-1122-01-RS.[2]Cunha W G, Tinoco M L P, Pancoti H L, et al. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene[J]. Plant Pathology, 2010, 59(4): 654-660.[3]赵丹, 许艳丽, 李春杰. 大豆菌核病的识别与综合防治[J]. 大豆通报, 2006(3): 15-16. (Zhao D, Xu Y L, Li C J. Identification and integrated managements for soybean Sclerotinia sclerotiorum[J]. Soybean Science and Technology, 2006(3): 15-16.)[4]Bolton M D, Thomma B P H J, Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary:Biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2010, 7(1): 1-16.[5]董利东, 王金生, 吴俊江, 等. 野生大豆种质资源对大豆菌核病抗性评价[J]. 大豆科学, 2014, 33(6): 900-909. (Dong L D, Wang J S, Wu J J, et al. Identification the resistance of wild soybean germplasm to Sclerotinia sclerotiorum[J]. Soybean Science, 2014, 33(6): 900-909.)[6]Kim H S, Diers B W. Inheritance of partial resistance to sclerotinia stem rot in soybean[J]. Crop Science, 2000, 40(1): 55-61.[7]Vuong T D, Diers B W, Hartman G L. Identification of QTL for resistance to sclerotinia stem rot in soybean plant introduction 194639 [J]. Crop Science, 2008, 48(6): 2209-2214.[8]Zhao X,Han Y P, Li Y H, et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps[J]. Plant Journal for Cell and Molecular Biology, 2015, 82(2): 245-255.[9]McCaghey M, Willbur J, Ranjan A, et al. Development and evaluation of Glycine max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum[J]. Frontiers in Plant Science, 2017, 8: 1495.[10]Kabbage M, Yarden O, Dickman M B. Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233: 53-60.[11]Godoy G, Steadman J R, Dickman M B, et al. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris[J]. Physiological and Molecular Plant Pathology, 1990, 37(3): 179-191.[12]Dutton M V, Evans C S. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment[J]. Canadian Journal of Microbiology, 1996, 42: 881-895.[13]Cessna S G, Sears V E, Dickman M B, et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host[J]. Plant Cell, 2000, 12: 2191-2199.[14]Rollins J A. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence[J]. Molecular Plant Microbe Interactions, 2003, 16(9): 785-795. [15]Walz A, Zingen-Sell I, Loeffler M, et al. Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum[J]. Plant Pathology, 2010, 57(3): 453-458.[16]Williams B, Kabbage M, Kim H J, et al. Tipping the balance:Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. PLoS Pathogens, 2011, 7(6): e1002107.[17]Kumar V, Chattopadhyay A, Ghosh S, et al. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase[J]. Plant Biotechnology Journal, 2016, 14(6): 1394-1405.[18]Wegulo S N, Yang X B, Martinson C A. Soybean cultivar responses to Sclerotinia sclerotiorum in field and controlled environment studies[J]. Plant Disease, 1998, 82(11): 1264-1270.[19]Kolkman J M, Kelly J D. An indirect test using oxalate to determine physiological resistance to white mold in common bean[J]. Crop Science, 2000, 40(1): 281-285.[20]孙明明, 韩英鹏, 陈浩, 等. 大豆菌核病鉴定方法比较及分析[J]. 大豆科学, 2007, 26(5): 728-731. (Sun M M, Han Y P, Chen H, et al. Comparisons and analysis on the methods of evaluating tolerance to soybean white mould[J]. Soybean Science, 2007, 26(5): 728-731.)[21]Donaldson P A, Anderson T, Lane B G, et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2001, 59(5): 297-307.[22]Cober E R, Rioux S, Rajcan I, et al. Partial resistance to white mold in a transgenic soybean line[J]. Crop Science, 2003, 43(1): 92-95.[23]Hu X, Bidney D L, Yalpani N, et al. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower[J]. Plant Physiology, 2003, 133(1): 170-181.[24]Livingstone D M, HamptonJ L, Phipps P M, et al. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene[J]. Plant Physiology, 2005, 137(4): 1354-1362.[25]Dias B B A, Cunha W G, Morais L S, et al. Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum[J]. Plant Pathology, 2006, 55(2): 187-193.[26]Yang X D, Yang J, Wang Y S, et al. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase[J]. Transgenic Research, 2019, 28(1): 103-114.[27]Kesarwani M, Azam M, Natarajan K, et al. Oxalate decarboxylase from Collybia velutipes: Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato[J]. Journal of Biological Chemistry, 2000, 275(10): 7230-7238.[28]Sun X P, Zhao Y, Jia J C, X, et al. Uninterrupted expression of Cmsit1 in a sclerotial parasite coniothyrium minitans leads to reduced growth and enhanced antifungal ability[J]. Frontiers in Microbiology, 2017, 8: 2208.[29]Lou Y, Han Y, Yang L, et al.CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans[J]. Environmental Microbiology, 2016, 17(11): 4711-4729.[30]曾丽梅. 盾壳霉草酸脱羧基因的克隆、功能验证及生防作用研究[D].武汉: 华中农业大学, 2013. (Zeng L M. Charavterization of oxalate decarboxylase genes in coniothyrium minitans: Cloning, functional analysis and roles in biological control[D]. Wuhan: Huazhong Agricultural University, 2013.)[31]Holsters M, de Waele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens[J].Molecular and General Genetics, 1978,183:181-187.[32]Yang J, Xing G J, Niu L, et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B[J]. Transgenic Research, 2018, 27(2): 155-166.[33]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis[J].Nucleic Acids Research, 1991, 19(6): 1349.[34]Telzur N, Abbo S, Myslabodski D, et al. Modified CTAB procedure for DNA isolation from Epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae)[J]. Plant Molecular Biology Reporter, 1999, 17(3): 249-254.[35]Kull L S, Vuong T D, Powers K S, et al. Evaluation of resistance screening methods for sclerotinia stem rot of soybean and dry bean[J]. Plant Disease, 2007, 87(12): 1471-1476.[36]Vale F X R, Fernandes Filho E I, Liberato J R. QUANT-A software for plant disease severity assessment[C]. New Zealand: 8th International Congress of Plant Pathology, 2003:105. [37]Kim K S, Min J Y, Dickman M B. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development[J]. Molecular Plant Microbe Interactions, 2008, 21(5): 605-612.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
[11]张宇航,李永光,王雪松,等.大豆GmGLP10 基因的克隆及生物信息学分析[J].大豆科学,2016,35(03):388.[doi:10.11861/j.issn.1000-9841.2016.03.0388]
 ZHANG Yu-hang,LI Yong-guang,WANG Xue-song,et al.Cloning and Bioinformatics Analysis of GmGLP10 in Soybean[J].Soybean Science,2016,35(05):388.[doi:10.11861/j.issn.1000-9841.2016.03.0388]

备注/Memo

收稿日期:2020-04-09
基金项目:国家转基因生物新品种培育科技重大专项(2016ZX08004-004)。
第一作者简介:杨静(1982-),女,硕士,助理研究员,主要从事大豆转基因育种研究。E-mail:jinggyang@126.com。
通讯作者:杨向东(1976-),男,博士,研究员,主要从事大豆生物技术育种研究。E-mail:xdyang020918@126.com。

更新日期/Last Update: 2020-10-21