[1]姜海鹏,田力峥,卜凡珊,等.大豆胞囊线虫病抗性相关bZIP转录因子的生物信息学分析[J].大豆科学,2020,39(05):703-711.[doi:10.11861/j.issn.1000-9841.2020.05.0703]
 JIANG Hai-peng,TIAN Li-zheng,BU Fan-shan,et al.Bioinformatics Analysis of bZIP Transcription Factors Related to Resistance to Soybean Cyst Nematode[J].Soybean Science,2020,39(05):703-711.[doi:10.11861/j.issn.1000-9841.2020.05.0703]
点击复制

大豆胞囊线虫病抗性相关bZIP转录因子的生物信息学分析

参考文献/References:

[1]Han Y P, Tan Y F, Hu H, et al. Quantitative trait loci with additive and epistatic effects underlying resistance to two HG types of soybean cyst nematode[J]. Plant Breeding, 2017,136(6): 720-727.[2]杨致荣, 王兴春, 李西明, 等. 高等植物的转录因子的研究进展[J]. 遗传, 2004, 26(3): 403-408. (Yang Z R, Wang X C, Li X M, et al. Advance on the study of transcription factors in higher plant[J]. Hereditas, 2004,26(3):403-408.)[3]Liu J H, Peng T, Dai W. Critical cis-acting elements and interacting transcription factors: Key players associated with abiotic stress responses in plants[J]. Plant Molecular Biology Reporter, 2014, 32(2): 303-317.[4]Seo P J, Park M J, Park C M. Alternative splicing of transcription factors in plant responses to low temperature stress: Mechanisms and functions[J]. Planta, 2013, 237(6): 1415-1424.[5]刘辉, 李德军, 邓治. 植物应答低温胁迫的转录调控网络研究进展[J].中国农业科学, 2014, 47(18): 3523-3533. (Liu H, Li D J, Deng Z. Advances in research of transcriptional regulatory network in response to cold stress in plants[J]. Scientia Agricultura Sinica, 2014, 47(18): 3523-3533.)[6]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status[J]. Current Opinion in Plant Biology, 2001, 4(4): 301-308.[7]Mohar S, Khan Z, Krishna K, et al. Sources of resistance to Fusarium wilt and root-knot nematode in indigenous chickpea germplasm[J]. Plant Genetic Resources, 2012, 10(3): 258-260.[8]Udvardi M K, Kakar K, Wandrey M, et al. Legume transcription factors: Global regulators of plant development and response to the environment[J]. Plant Physiology, 2007, 144(2): 538-549.[9]Talanian R, Mcknight C, Kim P. Sequence-specific DNA binding by a short peptide dimer[J]. Science, 1990, 249(4970): 769-771.[10]Hurst H C. Transcription factors 1: bZIP proteins[J]. Protein Profile, 1994, 1(2): 123-168.[11]Hu W, Yang H, Yan Y, et al. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava[J]. Scientific Reports, 2016, 6: 22783.[12]Jakoby M, Weisshaar B, Drge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3): 106-111.[13]Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333-350.[14]Cengiz B M, Vahap E, Mortaza H, et al. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4): e96014.[15]Wang J, Zhou J, Zhang B, et al. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. Journal of Integrative Plant Biology, 2011, 53(3): 212-231.[16]Hwang I, Jung H J, Park J I, et al. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response[J]. Genomics, 2014, 104(3): 194-202.[17]Zhang M, Liu Y, Shi H, et al. Evolutionary and expression analyses of soybean basic leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1): 159-160.[18]Vinson C, Acharya A, Taparowsky E J. Deciphering B-ZIP transcription factor interactionsin vitro and in vivo[J]. Biochimica et Biophysica Acta-Gene Structure and Expression, 2006, 1759(1-2): 4-12.[19]Hossain M A, Cho J I, Han M, et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17): 1512-1520.[20]Zong W, Tang N, Yang J, et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought resistance related genes[J]. Plant Physiology, 2016,171(4): 2810-2825.[21]Li C, Yue Y, Chen H, et al. The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development[J]. The Plant Cell, 2018, 30(10): 2402-2424.[22]Alonso R, Onate-Sanchez L, Weltmeier F, et al. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation[J]. Plant Cell, 21(6): 1747-1761.[23]Berendzen K W, Weiste C, Wanke D, et al. Bioinformatic cis-element analyses performed inArabidopsis and rice disclose bZIP-and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription[J]. BMC Plant Biology, 2012, 12(1): 125-132.[24]Matiolli C C, Tomaz J P, Duarte G T, et al. The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals[J]. Plant Physiology, 2011, 157(2): 692-705.[25]Dietrich K, Weltmeier F, Ehlert A, et al. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress[J]. The Plant Cell, 2011, 23(1): 381-395.[26]Yoshida T, Fujita Y, Maruyama K, et al. Four a rabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J]. Plant, Cell and Environment, 2015, 38(1): 35-49.[27]Jain S, Chittem K, Brueggeman R, et al. Comparative transcriptome analysis of resistant and susceptible common bean genotypes in response to soybean cyst nematode infection[J]. PLoS One, 2016, 11(7): 12-23.[28]Chang W, Dong L, Wang Z, et al. QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar ‘L-10’[J]. BMC Genomics, 2011, 12(1): 233-241.[29]Riggs R D, Schmitt D P. Completecharacterization of the race scheme for heterodera glycines[J]. Journal of Nematology, 1988, 20(3):392-395.[30]Zhen-Hua W, Li-Bo S, Hai-Yan W, et al. Distribution and developmental process of Heterodera glycines in soybean root[J]. Scientia Agricultura Sinica, 2009, 42(2): 3147-3153.[31]Esser D, Hoffmann L, Pham T K, et al. Protein phosphorylation and its role in archaeal signal transduction[J]. FEMS Microbiology Reviews, 2016, 40(5): 625-647.[32]Hol W G J, Halie L M, Sander C. Dipoles of the alpha-helix and beta-sheet: Their role in protein folding[J]. Nature, 1981, 294(5841):532-536.[33]Jiao Z, Rongrong G, Chunlei G, et al. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016, 7(1): 372-379..[34]刘慧洁, 徐恒, 邱文怡, 等. bZIP转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019, 31(7): 1205-1214. (Liu H J, Xu H, Qiu W Y, et al. Roles of bZIP transcription factors in plant growth and development and abiotic stress response[J]. Acta Agriculturae Zhejiangensis, 2019, 31(7): 1205-1214.)[35]孙明岳, 周君, 谭秋平, 等. 苹果bZIP转录因子家族生物信息学分析及其在休眠芽中的表达[J]. 中国农业科学, 2016, 49(7): 1325-1345. (Sun M Y, Zhou J, Tan Q P, et al. Analysis of basic leucine zipper genes and their expression during bud dormancy in apple (Malus×domestica)[J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.)[36]Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333-350.[37]Liao Y, Zou H F, Wei W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2): 225-240.[38]李贺, 宋冰, 郑士梅,等. 转录因子的结构与功能区分析[J]. 安徽农学通报, 2013, 19(19): 23-24. (Li H, Song B, Zheng S M, et al. Structure and function area analysis of transcription factor[J]. Anhui Agricultural Science Bulletin, 2013, 19(19): 23-24.)[39]崔琰. 小麦成熟胚脱分化过程中WRKY、bZIP家族转录因子及其靶基因的表达谱分析[D]. 河南: 河南农业大学, 2009: 20-30. (Cui Y. Analysis of gene expression profiles of WRKY and bZIP families transcription factor and their targets durung dedifferentiation of mature wheat embryos[D]. Henan: Henan Agricultural University 2009: 20-30.)

相似文献/References:

[1]马岩松,刘鑫磊,栾晓燕,等.大豆胞囊线虫病抗性基因相关分子标记对杂交后代抗性的鉴定效率[J].大豆科学,2014,33(02):173.[doi:10.11861/j.issn.1000-9841.2014.02.0173]
 MA Yansong,LIU Xinlei,LUAN Xiaoyan,et al.Identification Efficiency about Resistance to Soybean Cyst Nematode with Relative Molecular Markers in Hybrid Progeny[J].Soybean Science,2014,33(05):173.[doi:10.11861/j.issn.1000-9841.2014.02.0173]
[2]高 源,常 玮,韩英鹏,等.2种大豆胞囊线虫鉴定方法比较及分析[J].大豆科学,2012,31(02):274.[doi:10.3969/j.issn.1000-9841.2012.02.023]
 GAO Yuan,CHANG Wei,HAN Ying-peng,et al.Comparisons and Analyses on the Two Methods of Evaluating Resistance to Soybean Cyst Nematode[J].Soybean Science,2012,31(05):274.[doi:10.3969/j.issn.1000-9841.2012.02.023]
[3]朱英波,史凤玉,李建英,等.抗大豆胞囊线虫病野生大豆种质资源的初步筛选[J].大豆科学,2011,30(06):959.[doi:10.11861/j.issn.1000-9841.2011.06.0959]
 ZHU Ying-bo,SHI Feng-yu,LI Jian-ying,et al.Identification on Soybean Germplasm Resistant to Soybean Cyst Nematode from Glycine soja[J].Soybean Science,2011,30(05):959.[doi:10.11861/j.issn.1000-9841.2011.06.0959]
[4]盛碧涵,刘兵,陈秀兰,等.抗SCN位点rhg1与Rhg4在种质资源中的单倍型分析及分子标记开发[J].大豆科学,2017,36(03):345.[doi:10.11861/j.issn.1000-9841.2017.03.0345]
 SHENG Bi-han,LIU Bing,CHEN Xiu-lan,et al.Haplotype Analysis and Molecular Marker Development of Soybean Nematode Cyst Resistance Loci -rhg1 and Rhg4 in Soybean Germplasm[J].Soybean Science,2017,36(05):345.[doi:10.11861/j.issn.1000-9841.2017.03.0345]

备注/Memo

收稿日期:2020-03-14
基金项目:黑龙江省杰出青年基金项目(JC2018007);国家自然基金面上项目(31671717,31971967);国家科技重大专项和重点研发项目(课题)省级资助项目(GX17B002);黑龙江省博士后项目(LBH-Q17015);国家重点研发计划项目(2016YFD0100304)。
第一作者简介:姜海鹏(1994-),男,博士,主要从事大豆遗传育种研究。E-mail:1399728741@qq.com。
通讯作者:韩英鹏(1978-),男,博士,教授,主要从事大豆遗传育种研究和生物技术研究。E-mail:hyp234286@aliyun. com。

更新日期/Last Update: 2020-10-21