[1]李换丽,马燕斌,罗晓丽,等.外源硅对逆境胁迫下大豆抗逆相关转录因子表达的影响[J].大豆科学,2020,39(03):352-360.[doi:10.11861/j.issn.1000-9841.2020.03.0352]
 LI Huan-li,MA Yan-bin,LUO Xiao-li,et al.The Effect of Exogenous Silicon on Expression of Stress Related Transcription Factors in Soybean Under Adverse Stress[J].Soybean Science,2020,39(03):352-360.[doi:10.11861/j.issn.1000-9841.2020.03.0352]
点击复制

外源硅对逆境胁迫下大豆抗逆相关转录因子表达的影响

参考文献/References:

[1]朱永兴, 夏雨晨, 刘乐承, 等. 外源硅对植物抗盐性影响的研究进展[J]. 植物营养与肥料学报, 2019, 25(3): 498-509. (Zhu Y X, Xia Y C, Liu L C, et al. Beneficial effects of silicon on salt tolerance in plants[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 498-509.)[2]Gong H J, Randall D P, Flowers T J. Silicon deposition in the root reduces sodium uptake in rice (Oryza satina L.) seedlings by reducing bypass flow[J].Plant, Cell and Environment, 2006, 29(10): 1970-1979.[3]Yin L N, Wang S W, Li J Y, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J]. Acta Physiologiae Plantarum, 2013, 35: 3099-3107. [4]Chen D Q, Yin L N, Deng X P, et al. Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.)[J]. Acta Physiologiae Plantarum, 2014, 36(9): 2531-2535.[5]Tuna A L, Kaya C, Higgs D, et al. Silicon improves salinity tole-rance in wheat plants[J]. Environmental and Experimental Botany, 2008, 62(1): 10-16.[6]Liang Y C, Zhang W H, Chen Q, et al. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.)[J]. Environmental and Experimental Botany, 2006, 57(3): 212-219.[7]梁喜龙, 段立华, 梁鹏飞, 等. 外源硅包衣对干旱胁迫下大豆幼苗生长的调控效应[J]. 黑 龙 江 八 一 农 垦 大 学 学 报, 2019, 31(2): 7-12. (Liang X L, Duan L H, Liang P F, et al. Regulation effects of exogenous silicon coating on soybean seedling growth under drought stress[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(2): 7-12.)[8]郑世英, 郑晓彤, 耿建芬, 等. 硅对干旱胁迫下野生大豆幼苗生长和生理特性的影响[J]. 大豆科学, 2018, 37(2): 263-267. (Zheng S Y, Zheng X T, Geng J F, et al. Effects of silicon on growth and physiological characteristics of wild soybean seedlings under drought stress[J]. Soybean Science, 2018, 37(2): 263-267.)[9]李淑贤, 刘卫国, 高阳, 等. 硅对人工荫蔽胁迫下大豆幼苗生长及光合特性的影响[J].中国农业科学, 2018, 51(19): 3663-3672. (Li S X, Liu W G, Gao Y, et al. Effects of silicon on plant growth and photosynthetic characteristics of soybean seedlings under artificial shade stress[J]. Scientia Agricultura Sinica, 2018, 51(19): 3663-3672.)[10]王丽燕. 硅对野生大豆幼苗耐盐性的影响及其机制研究[J].大豆科学, 2013, 32(5): 659-663. (Wang L Y. Effects of Silicon on salt tolerance of glycine soja seedlings and its mechanism[J]. Soybean Science, 2013, 32(5): 659-663.)[11]李换丽, 雷佳, 吴霞, 等. 大豆WRKY转录因子及其生物学功能研究进展[J]. 大豆科学, 2019, 38(5): 813-820.(Li H L, Lei J, Wu X, et al. Studies on WRKY transcription factors and their biological functions in soybean[J].Soybean Science, 2019,38(5):813-820.)[12]李珍, 华秀婷, 张积森. 高等植物WRKY转录因子家族的演化及功能研究进展[J]. 热带作物学报, 2018, 39(2): 405-414. (Li Z, Hua X T, Zhang J S. Evolution and gene function of WRKY Transcription factor families in higher plants[J].Chinese Journal of Tropical Crops, 2018, 39(2): 405-414.)[13]Le D T, Nishiyama R, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research, 2011, 18: 263-276. [14]Pinheiro G L, Marques C S, Costa M D B L, et al. Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response[J].Gene, 2009, 444: 10-23. [15]Le D T, Nishiyama R, Watanabe Y, et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7: e49522.[16]Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.[17]Yu Y C, Wang N, Hu R B, et al. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. Springer Plus, 2016, 5: 920. [18]Shi W Y, Du Y T, Ma J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19: 4087.[19]Gong H J, Chen K M. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions[J].Acta Physiology Plant, 34:1589-1594.[20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-ΔΔCT Method[J] . Methods, 2001, 25(4): 402-408.[21]何淑平, 靳亚忠, 王 鹏. 硅对干旱胁迫下四棱豆幼苗生物量和生理特性的影响[J].水土保持学报, 2015, 29(2): 263-266, 298. (He S P, Ji Y Z, Wang P. Effects of silicon on biomass and physiological properties of winged bean seedling under drought stress[J]. Journal of Soil and Water Conservation, 2015, 29(2): 263-266, 298.)[22]牟英辉, 陈志梁, 程艳波, 等. 硅肥对大豆农艺性状产量及品质的影响[J]. 大豆科学, 2012, 31(4): 625-629. (Mu Y H, Chen Z L, Cheng Y B, et al. Effects of silicon fertilization on agronomic traits, yield and quality of soybean[J]. Soybean Science, 2012, 31(4): 625-629.)[23]Li H L, Zhu Y X, Hu Y H, et al. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture[J].Acta Physiologiae Plantarum, 2015, 37(4): 71.[24]Zhu Y X,Xu X X, Hu Y H, et al. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.[J]. Plant Cell Reports, 2015, 34(9): 1629-1646.[25]Van Bockhaven J, Steppe K, Bauweraerts I, et al. Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice[J]. Molecular Plant Pathology, 2015, 16(8): 811-824.[26]Zhu Y X, Yin J L, Liang Y F, et al.Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants[J]. Ecotoxicology and Environmental Safety, 2019, 174: 245-254.[27]Tran L S, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 2004, 16(9): 2481-2498.)[28]Jin H X, Huang F, Cheng H, et al. Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco[J]. Plant Molecular Biology Reporter, 2013, 31(2): 435-442.)[29]Jin H X,Xu G L, Meng Q C, et al. GmNAC5, a NAC transcription factor, is a transient response regulator induced by abiotic stress in soybean[J]. The Scientific World Journal, 2013: 768972.[30]Song H, Wang P F,Hou L, et al. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean[J]. Frontiers in Plant Science, 2016, 7: 9.[31]Zhou Q Z, Tian A G, Zou H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(03):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(03):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(03):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(03):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(03):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(03):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(03):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(03):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(03):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(03):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2019-12-05
基金项目:国家转基因生物新品种培育重大专项(2016ZX08010-003); 山西省农业科学院优势课题(YYS1710)。
第一作者简介:李换丽(1989-),女,硕士,助研,主要从事植物基因功能研究。E-mail: 719992362@qq.com。
通讯作者:马燕斌(1978-),男,博士,副研究员,主要从事植物基因功能研究。E-mail:mybin-wx@163.com。

更新日期/Last Update: 2020-07-14