[1]吴艳,侯智红,程群,等.大豆GmSPL3基因家族功能初探[J].大豆科学,2019,38(05):694-703.[doi:10.11861/j.issn.1000-9841.2019.05.0694]
 WU Yan,HOU Zhi-hong,CHENG Qun,et al.Preliminary Study on the Function of GmSPL3 Gene Family in Soybean[J].Soybean Science,2019,38(05):694-703.[doi:10.11861/j.issn.1000-9841.2019.05.0694]
点击复制

大豆GmSPL3基因家族功能初探

参考文献/References:

[1]孙天宇. 大豆开花期相关数量性状位点(QTL)的定位[D]. 哈尔滨:中国科学院东北地理与农业生态研究所, 2017:12-21. (Sun T Y. QTL mapping of flowering period interrelated in soybean[D]. Harbin: Northeast Institute of Geography and Agroecology Chinese Academy of Science, 2017:12-21.)
[2]徐豹. 作物育种研究与进展[M]. 北京:农业出版社, 1993:122-137. (Xu B. Research and development of crop breeding, the first volume[M]. Beijing: Agriculture Press,1993:122-137.)
[3]王金陵. 大豆性状之演化[J]. 农报, 1947, 12(5): 6-11. (Wang J L. Evolution of soybean trait[J]. Agriculture Press, 1947, 12(5): 6-11.)
[4]何炜,叶冰莹,周平,等. 转录因子NAC的研究进展[J]. 亚热带作物学报, 2008, 4(4):311-315. (He W,Ye B Y, Zhou P, et al. Research of NAC transcription factor[J]. Journal of Subtropic Crop, 2008, 4(4):311-315.)
[5]Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138: 750-759
[6]Ayako Y, Wu M F, Li Y, et al. The MicroRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell, 2009, 17: 268-278.
[7]Ling L Z, Zhang S D. Exploring the evolutionary differences of SBP-box genes targeted by miR156 and miR529 in plants[J]. Genetica, 2012, 140: 317-324.
[8]Xu M L, Hu T Q, Zhao J F, et al. Developmental functions miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL) genes in Arabidopsis thaliana[J]. Public Library of Science Genetics, 2016, 12(8): e4006263.
[9]Gao R M, Wang Y, Gruber M Y, et al. MiR156/SPL10 modulate lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS 79[J]. Frontier in Plant Science, 2018, 8: 22-26.
[10]Lu M C, Liu Y Q, Chen D Y, et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Molecular Plant, 2017, 10: 735-748.
〖LL〗[11]Meenu S P, Ma S S, Tessa M B, et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity[J]. Public Library of Science, 2013, 9(3): e1003235.
[12]Yamasaki H, Hayashi M, Fukazawa M, et al. SQUAMOSA promoter binding protein like-7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21: 347-361.
[13]Cui L G, Shan J X, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plant[J]. The Plant Journal, 2014, 80: 1108-1117.
[14]Jung J H, Hee H J, Ryu J Y, et al. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering[J]. Molecular Plant, 2016, 9:1647-1659.
[15]Jiao Y Q, Wang Y H, Xue D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42:541-591.
[16]Lu Z F, Yu H, Xiong G S, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture[J]. The Plant Cell, 2013, 25(10): 3743-3759.
[17]Cao D, Li Y, Wang J, et al. GmmiR156b overexpression delay flowering time in soybean[J]. Plant Molecular Biology, 2015, 89(4-5): 353-363.
[18]Bao A L, Chen H F, Chen L M, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean[J]. BMC Plant Biology, 2019, 19:131-143.
[19]Li X T, Xie Y Y, Zhu Q L, et al. Targeted genome editing in genes and cis-regulatory regions improves qualitative and quantitative traits in crops[J]. Molecular Plant, 2017, 10(11):1368-1370.
[20]Olhoft P M, Donovan C M, Somers D A. Soybean (Glycine max) transformation using mature cotyledonary node explants[J]. Methods Molecular Biology, 2006, 343: 385-96.
[21]Schwab R, Palatnik J F, Riester M, et al. Specific effects of MicroRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8: 517-527.
[22]高新梅.小麦SPL家族基因TaSPL17的功能研究[D]. 咸阳:西北农林科技大学, 2018: 23-29. (Gao X M. Function study on SPL family gene TaSPL17 in wheat[D]. Xianyang: Northwest Agriculture & Forest University, 2018: 23-29.)
[23]Xia Z J, Watanabe S, Yamada T, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: E2155-E2164.

相似文献/References:

[1]刘章雄,李卫东,孙石,等.1983~2010年北京大豆育成品种的亲本地理来源及其遗传贡献[J].大豆科学,2013,32(01):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
 LIU Zhang-xiong,LI Wei-dong,SUN Shi,et al.Geographical Sources of Germplasm and Their Nuclear Contribution to Soybean Cultivars Released during 1983 to 2010 in Beijing[J].Soybean Science,2013,32(05):1.[doi:10.3969/j.issn.1000-9841.2013.01.002]
[2]李彩云,余永亮,杨红旗,等.大豆脂质转运蛋白基因GmLTP3的特征分析[J].大豆科学,2013,32(01):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
 LI Cai-yun,YU Yong-liang,YANG Hong-qi,et al.Characteristics of a Lipid-transfer Protein Gene GmLTP3 in Glycine max[J].Soybean Science,2013,32(05):8.[doi:10.3969/j.issn.1000-9841.2013.01.003]
[3]王明霞,崔晓霞,薛晨晨,等.大豆耐盐基因GmHAL3a的克隆及RNAi载体的构建[J].大豆科学,2013,32(01):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
 WANG Ming-xia,CUI Xiao-xia,XUE Chen-chen,et al.Cloning of Halotolerance 3 Gene and Construction of Its RNAi Vector in Soybean (Glycine max)[J].Soybean Science,2013,32(05):12.[doi:10.3969/j.issn.1000-9841.2013.01.004]
[4]张春宝,李玉秋,彭宝,等.线粒体ISSR与SCAR标记鉴定大豆细胞质雄性不育系与保持系[J].大豆科学,2013,32(01):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
 ZHANG Chun-bao,LI Yu-qiu,PENG Bao,et al.Identification of Soybean Cytoplasmic Male Sterile Line and Maintainer Line with Mitochondrial ISSR and SCAR Markers[J].Soybean Science,2013,32(05):19.[doi:10.3969/j.issn.1000-9841.2013.01.005]
[5]卢清瑶,赵琳,李冬梅,等.RAV基因对拟南芥和大豆不定芽再生的影响[J].大豆科学,2013,32(01):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
 LU Qing-yao,ZHAO Lin,LI Dong-mei,et al.Effects of RAV gene on Shoot Regeneration of Arabidopsis and Soybean[J].Soybean Science,2013,32(05):23.[doi:10.3969/j.issn.1000-9841.2013.01.006]
[6]杜景红,刘丽君.大豆fad3c基因沉默载体的构建[J].大豆科学,2013,32(01):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
 DU Jing-hong,LIU Li-jun.Construction of fad3c Gene Silencing Vector in Soybean[J].Soybean Science,2013,32(05):28.[doi:10.3969/j.issn.1000-9841.2013.01.007]
[7]张力伟,樊颖伦,牛腾飞,等.大豆“冀黄13”突变体筛选及突变体库的建立[J].大豆科学,2013,32(01):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
 ZHANG Li-wei,FAN Ying-lun,NIU Teng-fei?,et al.Screening of Mutants and Construction of Mutant Population for Soybean Cultivar "Jihuang13”[J].Soybean Science,2013,32(05):33.[doi:10.3969/j.issn.1000-9841.2013.01.008]
[8]盖江南,张彬彬,吴瑶,等.大豆不定胚悬浮培养基因型筛选及基因枪遗传转化的研究[J].大豆科学,2013,32(01):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
 GAI Jiang-nan,ZHANG Bin-bin,WU Yao,et al.Screening of Soybean Genotypes Suitable for Suspension Culture with Adventitious Embryos and Genetic Transformation by Particle Bombardment[J].Soybean Science,2013,32(05):38.[doi:10.3969/j.issn.1000-9841.2013.01.009]
[9]王鹏飞,刘丽君,唐晓飞,等.适于体细胞胚发生的大豆基因型筛选[J].大豆科学,2013,32(01):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
 WANG Peng-fei,LIU Li-jun,TANG Xiao-fei,et al.Screening of Soybean Genotypes Suitable for Somatic Embryogenesis[J].Soybean Science,2013,32(05):43.[doi:10.3969/j.issn.1000-9841.2013.01.010]
[10]刘德兴,年海,杨存义,等.耐酸铝大豆品种资源的筛选与鉴定[J].大豆科学,2013,32(01):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]
 LIU De-xing,NIAN Hai,YANG Cun-yi,et al.Screening and Identifying Soybean Germplasm Tolerant to Acid Aluminum[J].Soybean Science,2013,32(05):46.[doi:10.3969/j.issn.1000-9841.2013.01.011]

备注/Memo

收稿日期:2019-04-10

基金项目:国家自然科学基金(31771815,31701445,31801384)。
第一作者简介:吴艳(1993-),女,硕士,主要从事大豆光周期调控开花研究。E-mail:15367613473@163.com。
通讯作者:林永波(1966-),男,博士,副教授,硕导,主要从事大豆光周期调控开花研究。E-mail:linyongbo1966@aIiyun.com。

更新日期/Last Update: 2019-09-20