AO Yan,WANG An,WU Qi,et al.Research Progress on Metabolic Pathways of Seed Protein and Related Regulation Mechanism in Soybean[J].Soybean Science,2018,37(05):794-80205.[doi:10.11861/j.issn.1000-9841.2018.05.0794]



[1]牛宁, 李占军, 金素娟, 等. 大豆应答逆境胁迫的蛋白质组学研究进展[J]. 大豆科学, 2016, 35(2): 337-343.(Niu N, Li Z J, Jin S J, et al. Advances on proteomics of soybean under stress[J]. Soybean Science, 2016, 35(2): 337-343.)
[2]Grieshop C M, Fahey G C. Comparison of quality characteristics of soybeans from Brazil, China, and the United States[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 2669-2673.
[3]Espina M J, Ahmed C M S, Bernardini A, et al. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean[J]. Frontiers in Plant Science, 2018, 9: 394-405.
[4]Geng X T, Tang J J, Cheng K P, et al. Synthesis and cytotoxicity evaluation of 3-amino-2-hydroxypropoxygenistein derivatives[J]. Chinese Journal of Natural Medicines, 2017, 15(11): 871-880.
[5]Eder K, Siebers M, Most E, et al. An excess dietary vitamin E concentration does not influence Nrf2 signaling in the liver of rats fed either soybean oil or salmon oil[J]. Nutrition & Metabolism, 2017, 14: 71-85.
[6]Lund M N, Lametsch R, Hviid M S, et al. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage[J]. Meat Science, 2007, 77(3): 295-303.
[7]Cucu T, Devreese B, Kerkaert B, et al. A comparative study of lipid and hypochlorous acid induced oxidation of soybean proteins[J]. LWT-Food Science and Technology, 2013, 50(2): 451-458.
[8]Xu Y T, Liu L L. Structural and functional properties of soy protein isolates modified by soy soluble polysaccharides[J]. Journal of Agricultural and Food Chemistry, 2016, 64(38): 7275-7284.
[9]Piornos J A, Burgosdíaz C, Ogura T, et al. Functional and physicochemical properties of a protein isolate from AluProt-CGNA: A novel protein-rich lupin variety (Lupinus luteus)[J]. Food Research International, 2015, 76: 719-724.
[10]Ziegler V,Ferreira C D, Hoffmann J F, et al. Effects of moisture and temperature during grain storage on the functional properties and isoflavone profile of soy protein concentrate[J]. Food Chemistry, 2018, 242: 37-44.
[11]Rotundo J L, Westgate M E. Meta-analysis of environmental effects on soybean seed composition[J]. Field Crops Research, 2009, 110(2): 147-156.
[12]Wang J, Liu L, Guo Y, et al. A dominant locus, qBSC-1, controls β subunit content of seed storage protein in soybean (Glycine max(L.) Merri.)[J]. Journal of Integrative Agriculture, 2014, 13(9): 1854-1864.
[13]Boehm J D, Nguyen V, Tashiro R M, et al. Genetic mapping and validation of the loci controlling 7S alpha′ and 11S A-type storage protein subunits in soybean [Glycine max (L.) Merr.] [J]. Theoretical and Applied Genetics, 2018, 131: 659-671.
[14]Maruyama N, Matsuoka Y, Yokoyama K, et al. A vacuolar sorting receptor-independent sorting mechanism for storage vacuoles in soybean seeds[J]. Scientific Reports, 2018, 8(1): 1108-1116.
[15]Nielsen N C, Bassüner R, Beaman T. Cellular and molecular biology of plant seed development[M]. Berlin Springer Netherlands, 1997: 151-220.
[16]Kinsella J E. Functional properties of soy proteins[J]. Journal of the American Oil Chemists′ Society, 1979, 56: 242-258.
[17]Utsumi S, Kinsella J E. Forces involved in soy protein regulation: Effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S, and soy isolate[J]. Journal of Food science, 1985, 50:1278-1282.
[18]Naito S, Hirai M Y, Chino M, et al. Expression of a soybean (Glycine max [L.] Merr.) seed storage protein gene in transgenic Arabidopsis thaliana and its response to nutritional stress and to abscisic acid mutations[J]. Plant Physiology, 1994, 104(2): 497-503.
[19]Nagano T, Hirotsuka M, Mori H, et al. Dynamic vsicoelastic study on the gelation of 7S globulin from soybeans[J]. Journal of Agricultural & Food Chemistry, 1992, 40(6): 941-944.
[20]Maruyama N, Mohamed Salleh M R, Takahashi K, et al. Structure-physicochemical function relationships of soybean beta-conglycinin heterotrimers[J]. Journal of Agricultural & Food Chemistry, 2002, 50(15): 4323-4326.
[21]Naito S, Hirai M K, Nambara E, et al. Expression of soybean seed storage protein genes in transgenic plants and their response to sulfur nutritional conditions[J]. Journal of Plant Physiology, 1995, 145(6): 614-619.
[22]Magni C, Sessa F, Capraro J, et al. Structural and functional insights into the basic globulin 7S of soybean seeds by using trypsin as a molecular probe[J]. Biochemical & Biophysical Research Communications, 2018, 496: 89-94.
[23]Singh A, Meena M, Kumar D, et al. Structural and functional analysis of various globulin proteins from soy seed[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(11): 1491-1502.
[24]Utsumi S, Matsumura Y, Mori T. Food proteins & their applications[M]. UK:Taylor Francis Inc, 1997: 257-291.
[25]Yang A, Yu X, Zheng A, et al.Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4[J]. Food Chemistry, 2016, 210: 148-155.
[26]Tezuka M, Taira H, Igarashi Y, et al. Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 1111-1117.
[27]Nielsen N C. Soybean genetics molecular biology & biotechnology[M]. UK: CAB International, 1996: 127-163.
[28]Utsumi S, Kinsella J E. Structure-function relationships in food proteins: Sub-unit interactions in heat-induced gelation of 7S,11S and soy isolate proteins [J]. Journal of Agricultural and food chemistry, 1985, 33: 297-303.
[29]Murzin A G, Brenner S E, Hubbard T. SCOP:A structural classification of proteins database for the investigation of sequences and structures[J]. Journal of Molecular Biology, 1995, 247(4): 536-540.
[30]Xu J, Mukherjee D, Chang S. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization[J]. Food Chemistry, 2017, 240: 1005-1013.
[31]Burks A W, Cockrell G, Connaughton C, et al. Identification of peanut agglutinin and soybean trypsin inhibitor as minor legume allergens[J]. International Archives of Allergy & Immunology, 1994, 105(2):143-149.
[32]Arp D J. Rhizobium japonicum hydrogenase: Purification to homogeneity from soybean nodules, and molecular characterization[J]. Arch Biochem Biophys, 1985, 237: 504-512.
[33]Tanaka K, Nguyen CT, Libault M, et al. Enzymatic activity of the soybean ecto-apyrase GS52 is essential for stimulation of nodulation[J]. Plant Physiol, 2011, 155: 1988-1998.
[34]Ferguson B J. Rhizobia and legume nodulation genes[J]. Brenners Encyclopedia of Genetics, 2013: 236-239.
[35]Silva L R, Pereira M J, Azevedo J, et al. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds[J]. Food Chemistry, 2013, 141(4): 3636-3648.
[36]Zahran H H. Rhizobium legume symbiosis and nitrogen fixation under severe conditions and in arid climate[J]. Microbiology & Molecular Biology Reviews, 1999, 63(4): 968-989.
[37]Delves A C, Mathews A, Day D A, et al. Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors[J]. Plant Physiology, 1986, 82(2): 588-590.
[38]Kim J, Rees D C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein[J]. Science, 1992, 257: 1677-1682.
[39]Schweitzer L E, Harper J E. Effect of light, dark and temperature on root nodule activity (acetylene reduction) of soybeans[J]. Plant Physiology, 1980, 65(1):51-56.
[40]万涛, 邸伟, 马春梅, 等. 大豆根瘤固氮酶活性与温度关系的研究[J]. 作物杂志, 2012, 6: 56-60.(Wan T, Di W, Ma C M, et al. Study on the relationship between soybean nodule nitrogenase activity[J]. Crops, 2012, 6: 56-60.)
[41]Chen W, Zheng D, Feng N, et al. The effects of gibberellins and mepiquat chloride on nitrogenase activity in Bradyrhizobium japonicum[J]. Acta Physiologiae Plantarum, 2015, 37(1): 1723-1733.
[42]Xia B, Sun Z, Wang L, et al. Analysis of the combined effects of lanthanum and acid rain, and their mechanisms, on nitrate reductase transcription in plants[J]. Ecotoxicology and Environmental Safety, 2017, 138: 170-178.
[43]Baghel L, Kataria S, Guruprasad K N. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean[J]. Bioelectromagnetics, 2016, 37(7): 455-470.
[44]Sánchez C, Itakura M, Okubo T, et al. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum[J]. Environmental Microbiology, 2014, 16(10): 3263-3274.
[45]Nicholas J C, Harper J E, Hageman R H. Nitrate reductase activity in soybeans (Glycine max [L.] Merr.): I. Effects of light and temperature[J]. Plant Physiology, 1976, 58: 731-735.
[46]Huang G, Wang L, Sun Z, et al. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings[J]. Biological Trace Element Research, 2015, 163: 224-234.
[47]Sun H, Wang L, Zhou Q. Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings[J]. Environmental Toxicology and Chemistry, 2013, 32:174-180.
[48]Verma D P S, Fortin M G, Stanley J, et al. Nodulins and nodulin genes of Glycine max[J]. Plant Molecular, 1986, 7(1): 51-61.
[49]Fuller F, Künstner P W, Nguyen T, et al. Soybean nodulin genes: Analysis of cDNA clones reveals several major tissue-specific sequences in nitrogen-fixing root nodules[J].Proceedings of the National Academy of Sciences,1983, 80(9) : 2594-2598.
[50]Gresshoff P M. Nitrogen fixation:Achievements and objectives[M]. Germany: Springer Science and Business Media, 2012.
[51]Perret X, Staehelin C, Broughton W J. Molecular basis of symbiotic promiscuity[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 180-201.
[52]Catherine M B, Eric G, Xavier P, et al. Establishing nitrogen-fixing symbiosis with legumes:How many rhizobium recipes?[J]. Trends in Microbiology, 2009, 17(10): 458-466.
[53]Morey K J, Ortega J L, Sengupta-Gopalan C. Cytosolic glutamine synthetase in soybean is encoded by a multigene family, and the members are regulated in an organ-specific and developmental manner[J]. Plant Physiology, 2002, 128(1): 182-193.
[54]Ishiyama K, Hayakawa T, Yamaya T. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions[J]. Planta, 1998, 204(3): 288-294.
[55]Lu W, Li H, Yuan D, et al. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean[J]. Theoretical & Applied Genetics, 2013, 126(2): 425-433.
[56]Zhang D, Lyu H, Chu S, et al. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean[J]. Scientific Reports, 2017, 7(1):5053-5065.
[57]Zhang D, Kan G, Hu Z, et al. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean[J]. Theoretical and Applied Genetics, 2014, 127(9):1905-1915.
[58]Li D, Zhao X, Han Y, et al. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions[J/OL]. Genomics, 2018, https://doi.org/10.1016/j.ygeno.2018.01.004.
[59]Okazaki S, Kaneko T, Sato S, et al. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system[J]. Proceedings of the National Academy of Sciences, 2013, 110(42): 17131-17136.
[60]Lim C W, Lee Y W, Lee S C, et al. Nitrate inhibits soybean nodulation by regulating expression of CLE genes[J]. Plant Science, 2014, 229: 1-9.
[61]Chiasson D M, Loughlin P C, Mazurkiewicz D, et al. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH+4 transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4814-4819.
[62]Sugawara M, Shah G R, Sadowsky M J, et al. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions[J]. Molecular Plant-Microbe Interaction, 2011, 24(4): 451-457.
[63]Kim Y K, Kim S, Um J H, et al. Functionalimplication of β-carotene hydroxylases in soybean nodulation[J]. Plant Physiology, 2013, 162(3): 1420-1433.
[64]Lee H I,In Y H, Jeong S Y, et al. Inactivation of the lpcC, gene alters surface-related properties and symbiotic capability of Bradyrhizobium japonicum[J]. Letters in Applied Microbiology, 2014, 59(1): 9-16.
[65]Masalkar P, Wallace I S, Hwang J H, et al. Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin[J]. Journal of Biological Chemistry, 2010, 285(31): 23880-23888.
[66]Ortega J L, Wilson O L, Sengupta-Gopalan C. The 5’ untranslated region of the soybean cytosolic glutamine synthetase β1 gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants[J]. Molecular Genetics and Genomics, 2012, 287(11-12): 881-893.
[67]Masalkar P D, Roberts D M. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: Distinct oligomeric structures and thiol-based regulation[J]. FEBS Letters, 2015, 589(2): 215-221.
[68]张同勋. 小麦谷氨酰胺合成酶在氮素代谢中的功能分析[D]. 郑州: 河南农业大学, 2012. (Zhang T X. The functional analysis of glutamine synthetase innitrogen metabolism in wheat[D]. Zhouzhou: Henan Agricultural University, 2012.)
[69]Seger M, Gebril S, Tabilona J, et al. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco[J]. Planta, 2015, 241(1): 69-81.
[70]Djennane S, Chauvin J E, Quilleré I, et al. Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers[J]. Transgenic Research, 2002, 11(2): 175-184.
[71]Sun F, Hou X, Li Y, et al. Molecular cloning and characterization of nitrate reductase gene cDNA from non-heading Chinese cabbage[J]. Frontiers of Agriculture in China, 2007, 1(2): 188-192.
[72]Lea P J, Blackwell R D, Joy K W. Ammonia assimilation in higher plants[M]. United Nations: Food and Agriculture Organization, 1992.
[73]Ishizaki T, Ohsumi C, Totsuka K, et al. Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana[J]. Amino Acids, 2010, 38(3): 943-950.
[74]Zeng D D, Qin R, Li M, et al. The ferredoxin-dependent glutamate synthase(OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice[J]. Molecular Genetics and Genomics, 2017, 292(2): 385-395.
[75]Nigro D, Blanco A, Anderson O D, et al. Characterization of ferredoxin-dependent glutamine-oxoglutarate amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat[J]. PloS One, 2014, 9(8): e103869.
[76]Wang H W, Zhang B, Hao Y J, et al. The soybean Dof-type transcription factor genes,GmDof4and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant Journal, 2007, 52(4): 716-729.
[77]Zhang J, Hao Q, Bai L, et al. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea[J]. Biotechnology for Biofuels, 2014, 7(1): 128.
[78]Song Q X, Li Q T, Liu Y F, et al. Soybean GmbZIP123gene enhances lipid content in the seeds of transgenic Arabidopsis plants[J]. Journal of experimental botany, 2013, 64(14): 4329-4341.
[79]Lu X, Li Q T, Xiong Q, et al. The transcriptomic signature of developing soybean seeds reveals thegenetic basis of seed trait adaptation during domestication[J]. The Plant Journal, 2016, 86(6): 530-544.
[80]Zhang Y Q, Lu X, Zhao F Y, et al. Soybean GmDREBL increases lipid content in seeds of transgenic Arabidopsis[R]. Scientific Reports, 2016, 6: 34307.
[81]Zhang C, Meng Q, Gai J, et al. Cloning and functional characterization of an O-acetylserine (thiol) lyase-encoding gene in wild soybean (Glycine soja)[J]. Molecular Biology Reports, 2008, 35(4): 527-534.
[82]Ning H, Zhang C, Yao Y, et al. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4in tobacco increases cysteine levels and enhances tolerance to cadmium stress[J]. Biotechnology Letters, 2010, 32(4): 557-564.
[83]Kyrychenko O, Mahfouze H A, El-Sayed O, et al. The affect of specific plant exogenous lectin on the symbiotic potential of soybean-rhizobium system and lectin activity of soybean seeds[J]. Scientia Agriculturae, 2014, 6(1):1-7.
[84]Cooper B, Campbell K B, Beard H S, et al. Aproteomic network for symbiotic nitrogen fixation efficiency in Bradyrhizobium elkanii[J]. Molecular Plant-Microbe Interactions, 2018, 31:334-343.
[85]Gao T G, Xu Y Y, Jiang F, et al. Nodulation characterization and proteomic profiling of Bradyrhizobium liaoningense CCBAU05525 in response to water-soluble humic materials[R]. Scientific Reports, 2015, 5:10836.
[86]曹永强, 宋书宏, 董丽杰. 大豆蛋白质和油分含量遗传研究进展[J]. 大豆科学, 2012, 31(2): 316-319. (Cao Y Q, Song S H, Dong L J. Research progress on heredity of protein and oil content in soybean[J]. Soybean Science, 2012, 31(2): 316-319.)


[1]李淑芬,胡 敏.碱溶酸沉法提取大豆蛋白条件的优化[J].大豆科学,2014,33(02):274.[doi:10.11861/j.issn.1000-9841.2014.02.0274]
 LI Shu-fen,HU Min.Optimizition of Soybean Protein Extraction by Alkali Soluble Acid Sinking Method[J].Soybean Science,2014,33(05):274.[doi:10.11861/j.issn.1000-9841.2014.02.0274]
 SU Jun-cai,DONG Chao,SHI Yan-mao,et al.Extraction of Nattokinase by Soybean Protein Cross-linked Chitosan Microsphere[J].Soybean Science,2011,30(05):652.[doi:10.11861/j.issn.1000-9841.2011.04.0652]
 LI Xi-sheng,SHI Yan-mao,TIAN Zhi-bin,et al.Properties of Soybean Proteins Having Affinity Adsorption with Nattokinase[J].Soybean Science,2012,31(05):131.[doi:10.3969/j.issn.1000-9841.2012.01.030]
 WANG Bo,HUA Yu-fei,KONG Xiang-zhen,et al.Exploitation and Design of Steam Heating Device for Soy Protein[J].Soybean Science,2011,30(05):1022.[doi:10.11861/j.issn.1000-9841.2011.06.1022]
 QI Hai-ping,WANG Li-qin,HU Wen-zhong,et al.Effect of Soybean Protein Powder on Yield and Quality of Whey Cheese[J].Soybean Science,2011,30(05):306.[doi:10.11861/j.issn.1000-9841.2011.02.0306]
 BAI Hui-yu,XU Jing,QU Hai-jun,et al.Synthesis and Solution Behavior of Photo-sensitive Graft Copolymers Based on Soy Protein Isolate[J].Soybean Science,2011,30(05):475.[doi:10.11861/j.issn.1000-9841.2011.03.0475]
 XU Jing-ting,REN Jian-hua,YE Ling-feng,et al.Technical Research of 7S and 11S Soy Protein Fractionation in Laboratory-scale[J].Soybean Science,2010,29(05):325.[doi:10.11861/j.issn.1000-9841.2010.02.0325]
 ZHANG Jie,WANG Zhen-bin,WANG Shi-qin,et al.Extraction of Soybean Protein with Alkaline Method Assisted by Ultrasound[J].Soybean Science,2010,29(05):498.[doi:10.11861/j.issn.1000-9841.2010.03.0498]
 XU Jing-ting,REN Jian-hua,YE Ling-feng,et al.Technical Research of Industrialized 7S and 11S Soy Protein Fractionation[J].Soybean Science,2010,29(05):519.[doi:10.11861/j.issn.1000-9841.2010.03.0519]
 YANG Guang,SUI Ning,YANG Bo,et al.Optimization for Viscosity Reduction of Soybean Protein Using Response Surface Methodology[J].Soybean Science,2010,29(05):1028.[doi:10.11861/j.issn.1000-9841.2010.06.1028]




更新日期/Last Update: 2018-10-08